Question 1169874
<pre>
{{{4(2^""/x^""-5x^4/(x^5+3))}}} = 12(-x^5+2)/x(x^5+3)

{{{8^""/x^""-20x^4/(x^5+3)}}} 

LCD = x(x<sup>5</sup>+3)

Multiply the first fraction by {{{((x^5+3)/(x^5+3))}}}
Multiply the second fraction by {{{(x^""/x^"")}}},
both which just amount to multiplying by 1:

{{{((x^5+3)/(x^5+3))(8^""/x^"")-(x^""/x^"")(20x^4/(x^5+3))}}}
 
{{{(8(x^5+3))/(x(x^5+3))-(x(20x^4))/(x(x^5+3))}}} 

{{{(8x^5+24)/(x(x^5+3))-(20x^5)/(x(x^5+3))}}} 

Combine the numerators over the common denominator:

{{{((8x^5+24)-(20x^5))/(x(x^5+3))}}} 

Remove the parentheses:

{{{(8x^5+24-20x^5)/(x(x^5+3))}}}

{{{(-12x^5+24)/(x(x^5+3))}}}

{{{12(-x^5+2)/x(x^5+3)}}}

Edwin</pre>