Question 108856
:
{{{(3y^3 - 192y)}}}
{{{3y(y^2 - 64)}}}; factor out 3y, now you have the difference of squares
{{{3y(y - 8)(y+8)}}}
:
{{{24x^2 + 12y^2}}}
{{{12(2x^2 + y^2)}}}; that's about all you can do with it
:

6my - 2ab + 2am - 6by
:
6my - 6by + 2am - 2ab; regroup
:
6y(m - b) + 2a(m - b); factored out 6y and 2a
:
(m - b) (6y + 2a); factored out (m-b)
:
:
ac+ bd + bc + ad
:
ac + ad + bd + bc; regroup
:
a(c+d) + b(d+c); factored out a and b
Same as
a(c+d) + b(c+d);
:
(c + d)(a + b); factored out (c+d)
:
{{{(x^6 - 81)}}}
Difference of squares:
{{{(x^3 - 9)(x^3 + 9)}}}
:
:
{{{(49g^2 - 81h^4)}}}
Difference of squares
{{{(7g - 9h^2)(7g + 9h^2)}}}
:
4ax - 14 bq - 35by - 10 ay 
:
4ax - 10ay - 14bq - 35by; regroup
:
2a(2x - 5y) - 7b(2q + 5y); change the sign inside the brackets
:
Sorry, I hit the wrong button and sent this prematurely.