Question 1168747
<font color=black size=3>
{{{((a^2-b^2)/(a^2-ab))*((2a^2-2a)/(a-1))}}} Given expression


{{{(((a-b)(a+b))/(a^2-ab))*((2a^2-2a)/(a-1))}}} Factor a^2-b^2 using difference of squares rule


{{{(((a-b)(a+b))/(a(a-b)))*((2a^2-2a)/(a-1))}}} Factor a^2-ab by pulling out an 'a'


{{{(((a-b)(a+b))/(a(a-b)))*((2a(a-1))/(a-1))}}} Factor 2a out of 2a^2-2a


{{{((highlight((a-b))(a+b))/(a*highlight((a-b))))*((2a(a-1))/(a-1))}}} Notice this pair of (a-b) terms


{{{((cross((a-b))(a+b))/(a*cross((a-b))))*((2a(a-1))/(a-1))}}} Those terms cancel


{{{((a+b)/a)*((2a(a-1))/(a-1))}}} Leaving this behind


{{{((a+b)/a)*((2a*highlight((a-1)))/(highlight((a-1))))}}} Next we have this pair of (a-1) terms


{{{((a+b)/a)*((2a*cross((a-1)))/(cross((a-1))))}}} Which cancel


{{{((a+b)/a)*((2a)/1)}}} and they go away leaving this


{{{((a+b)/(highlight(a)))*((2highlight(a))/1)}}} Finally we have a pair of 'a' terms


{{{((a+b)/(cross(a)))*((2cross(a))/1)}}} which cancel


{{{((a+b)/1)*(2/1)}}} leaving this behind


{{{((a+b)*2)/(1*1)}}} multiply straight across


{{{(2a+2b)/1}}}


{{{2a+2b}}}


The final answer is 2a+2b which is the same as 2(a+b)
</font>