Question 1168089
<pre>
Instead of doing your problem for you, I'll do one EXACTLY like it,
step-by-step.  Use it as a model to do yours by:

{{{(6)/(x+4) - (3)/(x-4)}}}{{{""=""}}}

The LCD is (x+4)(x-4), so multiply both fractions by {{{((x+4)(x-4))/((x+4)(x-4))}}} [which just equals 1].

{{{(((x+4)(x-4))/((x+4)(x-4)))((6)/(x+4)) - (((x+4)(x-4))/((x+4)(x-4)))((3)/(x-4))}}}{{{""=""}}}

{{{(((cross(x+4))(x-4))/((x+4)(x-4)))((6)/(cross(x+4))) - (((x+4)(cross(x-4)))/((x+4)(x-4)))((3)/(cross(x-4)))}}}{{{""=""}}}

{{{((x-4)*6)/((x+4)(x-4))-((x+4)*3)/((x+4)(x-4))}}}{{{""=""}}}

{{{((x-4)*6-(x+4)*3)/((x+4)(x-4))}}}{{{""=""}}}

{{{(6(x-4)-3(x+4))/((x+4)(x-4))}}}{{{""=""}}}

{{{(6x-24-3x-12)/((x+4)(x-4))}}}{{{""=""}}}

{{{(3x-36)/((x+4)(x-4))}}}{{{""=""}}}

{{{(3(x-12))/((x+4)(x-4))}}}

Now do yours exactly the same way.

Edwin</pre>