Question 1165165
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ f(x)\ =\ \sqrt{x}\ -\ 3]


Replace *[tex \Large f(x)] with *[tex \Large y]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ =\ \sqrt{x}\ -\ 3]


Solve for *[tex \Large x] in terms of *[tex \Large y]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  y\ +\ 3\ =\ \sqrt{x}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  (y\ +\ 3)^2\ =\ x]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  y^2\ +\ 6y\ +\ 9\ =\ x]


Swap the variables


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  y\ =\ x^2\ +\ 6x\ +\ 9]


Replace *[tex \Large y] with *[tex \Large f^{-1}(x)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  f^{-1}(x)\ =\ x^2\ +\ 6x\ +\ 9]


																
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}
</font>