Question 1163858
<font face="Times New Roman" size="+2">


If *[tex \Large f(p)] is a quadratic, then it can be expressed as:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ f(p)\ =\ ap^2\ +\ bp\ +\ c]


You are given *[tex \Large f(60)\ =\ 2750,\ \ ]*[tex \Large f(70)\ =\ 6000,\ \ ] and *[tex \Large f(80)\ =\ 9750]


Therefore:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ (60)^2a\ +\ (60)b\ +\ c\ =\ 2750]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ (70)^2a\ +\ (70)b\ +\ c\ =\ 6000]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ (80)^2a\ +\ (80)b\ +\ c\ =\ 2750]


Solve the 3X3 system of linear equations to determine the coefficients *[tex \Large a,\ ]*[tex \Large b,\ ] and *[tex \Large c] so that you can make the general quadratic:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ f(p)\ =\ ap^2\ +\ bp\ +\ c]


be the specific quadratic required. 

																
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}
</font>