Question 1161472
<font face="Times New Roman" size="+2">


Since the height of the cylinder is twice the radius, the volume of the cylinder can be expressed by:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 2\pi{(r_1)^3}]


This must be 95% of 8000 times the volume of a sphere with radius 0.25


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 2\pi{(r_1)^3}\ =\ \frac{30400}{3}\pi{(r_2)^3}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ {(r_1)^3}\ =\ \frac{15200}{3}{(r_2)^3}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ r_1\ =\ \sqrt[3]{\frac{15200}{3}}(r_2)]


But we are given *[tex \Large r_2\ =\ 0.25]


Do the arithmetic to find *[tex \Large r_1] and then multiply by 2.
								
								
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}
</font>