Question 107628
{{{ x^3y^2=t^4/w}}}…….. solve for{{{ y}}}


{{{y^2=(t^4/w)/x^3 }}}.........we can write {{{x^3}}} as {{{x^3/1}}}, then


{{{y^2=(t^4/w)/(x^3/1) }}}.........since 

the quatient of two fractions ({{{(a/b)/(c/d)}}} is {{{ad/bc}}}, we will have


{{{y^2=t^4/(wx^3) }}}........now find sqrt of both sides


{{{sqrt(y^2) = sqrt(t^4/wx^3)}}}

or {{{sqrt(y^2) = sqrt(t^4)/sqrt(wx^3)}}}


{{{y = t^2/x(sqrt(wx))}}}