Question 1160473
<font face="Times New Roman" size="+2">


Find the two critical points by solving:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{d}{dx}\(x^3\ -\ 3x\)\ =\ 0]


Then evaluate the second derivative at each of the critical points. If:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{d^2f}{dx^2}\|_{x_i}\ <\ 0]


Then the critical point is a local maximum. If:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{d^2f}{dx^2}\|_{x_i}\ >\ 0]


Then the critical point is a local minimum.
								
								
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}
</font>