Question 1158539

{{{f(x)=x^2 }}} represents a parabola with vertex at ({{{0}}}, {{{0}}}), that opens {{{up}}}.

If we translate this graph {{{h}}} units to the {{{right}}}, then {{{g(x)}}} will be:

{{{g(x) = (x - h)^2}}}.

If we translate the graph of  {{{f(x)=x^2}}} {{{k}}} units {{{up}}}, then {{{g(x)}}} will be:

{{{g(x)=x^2 + k}}}

If we translate the graph of  {{{f(x)=x^2}}} {{{k}}} units {{{down}}}, then {{{g(x)}}} will be:

{{{g(x)=x^2 - k}}}

If we translate the graph of  {{{f(x)=x^2}}}  {{{h}}} units to the {{{left}}} and  {{{k}}} units {{{up}}}, then {{{g(x)}}} will be:

{{{g(x)=(x+h)^2 + k }}}

If we translate the graph of  {{{f(x)=x^2}}}  {{{h}}} units to the {{{left}}} and  {{{k}}} units {{{down}}}, then {{{g(x)}}} will be:

{{{g(x)=(x+h)^2 - k }}}