Question 1158597

One stick is {{{3ft}}} long and another is {{{6ft}}} long. You break the longer stick into sections.


 (a) If the sections are {{{2ft}}} and {{{4ft}}} long, will the sticks form a triangle?

{{{a=2 }}}
{{{b=3 }}}
{{{c=4}}}

recall: The Triangle Inequality Theorem states that the {{{sum}}} of any {{{2}}} sides of a triangle {{{must}}} be greater than the measure of the {{{third }}}side.

so,
{{{a+b>c}}} ->{{{2+3>4}}}->{{{5>4}}} ->true
{{{a+c>b}}} ->{{{2+4>3}}}->{{{6>3}}}-> true
{{{b+c>a}}} ->{{{3+4>2}}}->{{{7>2}}} ->true

=> the sticks {{{will}}} form a triangle

(b) If the sections are {{{1ft}}} and {{{5ft}}} long, will the sticks form a triangle?
{{{a=1 }}}
{{{b=5 }}}
{{{c=4}}}
{{{a+b>c}}} ->{{{1+5>4}}}->{{{6>4}}}-> false
{{{a+c>b}}} ->{{{1+4>5}}}->{{{5>5}}} ->false
{{{b+c>a}}} ->{{{5+4>1}}}->{{{9>1}}}-> true

since two false => the sticks will {{{not}}} form a triangle


(c) If you break the longer stick at an arbitrary point, what is the probability that they form a triangle?

 the probability that they form a triangle is {{{1/6}}} or r approximately {{{16.67}}}%