Question 1158582


IF {{{f}}}’{{{(x)}}} ={{{g}}}’{{{(x)}}} then
{{{f(x) - g(x) = zero}}}=>           {{{false}}}

explanation:

->according to mean value theorem: If {{{f}}}’{{{(x)}}} ={{{g}}}’{{{(x)}}}for all {{{x}}} in an interval ({{{a}}},{{{b}}}) then in this interval we have 
{{{f(x)=g(x)+c}}} where {{{c}}} is {{{some}}}{{{ constant}}}.



so, {{{f}}}’{{{(x)}}} ={{{g}}}’{{{(x)}}} then {{{f(x) - g(x) }}}= some constant {{{C}}}  would be true