Question 1158165
<font color=black size=3>
Answer: <font color=red>$2</font>


==========================================================


Explanation:
Construct a table showing the probabilities of each roll (column 2) and the winnings for each roll (column 1). Column 3 represents the product of columns 1 and 2.
<table border = "1" cellpadding = "5">
<tr><td>X</td><td>P(X)</td><td>W(X)</td><td>P(X)*W(X)</td></tr>
<tr><td>1</td><td>1/6</td><td>0</td><td>(1/6)*0 = 0</td></tr>
<tr><td>2</td><td>1/6</td><td>0</td><td>(1/6)*0 = 0</td></tr>
<tr><td>3</td><td>1/6</td><td>0</td><td>(1/6)*0 = 0</td></tr>
<tr><td>4</td><td>1/6</td><td>1</td><td>(1/6)*1 = 1/6</td></tr>
<tr><td>5</td><td>1/6</td><td>3</td><td>(1/6)*3 = 3/6</td></tr>
<tr><td>6</td><td>1/6</td><td>8</td><td>8*(1/6) = 8/6</td></tr>
</table>
X = roll number selected from set {1,2,3,4,5,6}
P(X) = probability of rolling X
W(X) = winnings for rolling X


Add up the results of column 3 to get:
0+0+0+1/6+3/6+8/6 = (1+3+8)/6 = 12/6 = 2


The expected winnings is $2
</font>