Question 1157649
<font face="Times New Roman" size="+2">


Multiply the second equation by -5:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  8x\ +\ 5y\ =\ -7]

*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 15x\ -\ 5y\ =\ \frac{5}{4}]


Add the equations, term by term


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 23x\ +\ 0y\ =\ -\frac{23}{4}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ =\ -\frac{1}{4}]


Substitute this *[tex \Large x] value into either equation and solve for *[tex \LARGE y]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 8\(-\frac{1}{4}\)\ +\ 5y\ =\ -7]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ -2\ +\ 5y\ =\ -7]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ =\ -1]


Therefore, the unique ordered pair that satisfies each of the equations is *[tex \Large \(-\frac{1}{4},\,-1\)]
								
								
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}
</font>