Question 1157561

Suppose 

{{{f(x) = sqrt(x - 1) }}}
{{{g(x) = x^2 + 5}}}

 Find :
(a) 
({{{f }}}◦ {{{g}}}){{{(x)}}}={{{f(g(x))}}}

({{{f }}}◦ {{{g}}}){{{(x)}}}={{{f( x^2 + 5)}}}

({{{f }}}◦ {{{g}}}){{{(x)}}}={{{sqrt((x^2 + 5)- 1 ) }}}

({{{f }}}◦ {{{g}}}){{{(x)}}}={{{sqrt(x^2 +4 ) }}}





(b)

 ({{{g}}} ◦ {{{f}}}){{{(x)}}}={{{g(f(x))}}}

 ({{{g}}} ◦ {{{f}}}){{{(x)}}}={{{g(sqrt(x - 1))}}}

({{{g}}} ◦ {{{f}}}){{{(x)}}}={{{(sqrt(x - 1))^2+5}}}

({{{g}}} ◦ {{{f}}}){{{(x)}}}={{{x - 1+5}}}

({{{g}}} ◦ {{{f}}}){{{(x)}}}={{{x+4}}}