Question 1157320

{{{log(x^2 + 11x + 8) - log(x + 1) = 1}}}


{{{log((x^2 + 11x + 8)/(x + 1)) = 1}}}.......write {{{1}}} as {{{log(10)}}}


{{{log((x^2 + 11x + 8)/(x + 1)) = log(10)}}}....if lo same, then


{{{(x^2 + 11x + 8)/(x + 1) = 10}}}


{{{x^2 + 11x + 8 = 10(x + 1)}}}


{{{x^2 + 11x + 8 = 10x + 10}}}


{{{x^2 + 11x + 8 -10x - 10=0}}}


{{{x^2 + x  - 2=0}}}


{{{x^2 + x  - 2=0}}}......write {{{x}}} as {{{-x+2x}}}


{{{x^2 -x+2x  - 2=0}}}


{{{(x^2 -x)+(2x  - 2)=0}}}


{{{x(x -1)+2(x  - 1)=0}}}


{{{(x+2)(x  - 1)=0}}}


solutions:

{{{x=-2}}}...... (assuming a complex-valued logarithm)
{{{x=1}}}