Question 1157058
How many five card hands consisting of 2 kings and 3 aces can be dealt from a
deck of 52 playing cards?
<pre>
4 suits CHOOSE 2 for the kings = 4C2 = (4×3)/(2×1) = 12/2 = 6 ways.  They are


<font color="red"><b>K♥ K♦</b></font>  .  .  .
<font color="red"><b>K♥</b></font> K♠  .  .  . 
<font color="red"><b>K♥</b></font> K♣  .  .  .
<font color="red"><b>K♦</b></font> K♠  .  .  .
<font color="red"><b>K♦</b></font> K♣  .  .  .
K♠ K♣  .  .  .

For every one of those 6 ways to have the kings, we can put 3 aces with them any
of:

4 suits CHOOSE 3 for the aces = 4C3 = (4×3×2)/(3×2×1) = 24/6 = 4 ways.  

They are:

.  .  <font color="red"><b>A♥ A♦</b> </font>A♠
.  .  <font color="red"><b>A♥ A♦</b> </font>A♣
.  .  <font color="red"><b>A♥</b></font> A♠ A♣
.  .  <font color="red"><b>A♦</b></font> A♠ A♣

That's 6 times 4 or 6×4 or 24 ways to have such a 5-card poker hand.
 
Edwin</pre>