Question 1156675

 using the identity {{{sin^2(theta) + cos^2(theta) = 1}}}, find the value of {{{tan(theta)}}}, to the nearest hundredth, if 

{{{cos(theta) = -0.7}}} and theta is in Quadrant II



{{{tan( theta)=sin(theta)/cos (theta) }}}

use identity
 
{{{sin^2(theta)+ cos^2(theta) = 1}}}

{{{sin^2(theta) = 1-cos^2(theta) }}}

{{{sin(theta) = sqrt(1-cos^2( theta) )}}}

{{{sin(theta) = sqrt(1-(-0.7)^2)}}}

{{{sin(theta) = sqrt(0.51)}}}

{{{sin(theta) = 0.714143}}}

then

{{{tan( theta)=0.714143/-0.7}}}

{{{tan( theta)=-1.020204061220407}}}

{{{tan( theta)=-1.02}}}