Question 1156475
Since {{{log(x^3)=3*log(x)}}}, the equation turns into {{{3*log(x)=(log(x))^2}}}. Letting y=log(x) gets {{{3y=y^2}}}. Moving everything to one side gives {{{y^2-3y=0}}}. Factoring gives {{{y(y-3)=0}}}. So y=0 or y=3. If y=0, then x=1. If y=3, the answer depends on what base you are using. Assuming a base of 10, x=1000. So the solution is (1,1000). If the base is some arbitrary number n, then the answer will be (1,n<sup>3</sup>).