Question 107053
{{{(3)/(2x+1) + (3)/ (2x-1)= (8x)/(4x^2-1)}}}

First I will introduce a special product first-----the difference of two squares.


It states that

{{{a^2-b^2=(a+b)(a-b)}}}


We can apply this here to make this problem easy to solve.


{{{(3)/(2x+1) + (3)/ (2x-1)= (8x)/(4x^2-1)}}}
{{{(3)/(2x+1) + (3)/ (2x-1)= (8x)/((2x)^2-1^2)}}}
{{{(3)/(2x+1) + (3)/ (2x-1)= (8x)/((2x+1)(2x-1))}}}
{{{(2x+1)(2x-1)((3)/(2x+1) + (3)/ (2x-1))=(2x+1)(2x-1)((8x)/((2x+1)(2x-1)))}}}
{{{3(2x+1)+3(2x-1) =8x}}}
{{{(6x+3)+(6x-3)=8x}}}
{{{(6x+6x)+(3-3)=8x}}}
{{{12x+0=8x}}}
{{{12x=8x}}}
{{{12x-8x=8x-8x}}}
{{{4x=0}}}
{{{4x/4=0/4}}}
{{{x=0}}}



Power up,
HyperBrain!