Question 1154787


given:

Degree 3
polynomial with integer coefficients 
with zeros:
 {{{x[1]=-5i}}}=> complex zeros always come in pairs, so you also have {{{x[2]=5i}}}
and 
{{{x[3]=6/5}}}

{{{f(x)=(x-x[1])(x-x[2])(x-x[3])}}}

{{{f(x)=(x-(-5i))(x-5i)(x-6/5)}}}

{{{f(x)=(x+5i)(x-5i)(x-6/5)}}}

{{{f(x)=(x^2-(5i)^2)(x-6/5)}}}

{{{f(x)=(x^2-25(i)^2)(x-6/5)}}}

{{{f(x)=(x^2-25(-1))(x-6/5)}}}

{{{f(x)=(x^2+25)(x-6/5)}}}

{{{f(x)=x^3-(6/5)x^2+25x-25(6/5)}}}

{{{f(x)=x^3-(6/5)x^2+25x-30}}}