Question 1153828
<br>
A. P(even)<br>
The last ball drawn has to be even.  4 of the 9 balls are even.<br>
P(even) = 4/9<br>
B. P(greater than 5000)<br>
The first ball drawn has to be 5 or greater.  5 of the 9 balls are 5 or greater.<br>
P(greater than 5000) = 5/9<br>
C. P(odd and less than 3000)<br>
We have to separate this into two cases.  The last ball drawn has to be odd; the first has to be either 1 or 2.<br>
If the first ball drawn is the 1 (probability 1/9), then 4 of the remaining 8 balls are odd.<br>
P(odd number with first digit 1) = (1/9)(4/8) = 4/72<br>
If the first ball drawn is the 2 (also probability 1/9), then 5 of the remaining 8 balls are odd.<br>
P(odd number with first digit 2) = (1/9)(5/8) = 5/72<br>
P(odd number less than 3000) = 4/72+5/72 = 9/72 = 1/8<br>