Question 1153798


{{{x^2 + 6x - 27 = 0}}}


Step 1: Separate term from the variables

{{{(x^2 + 6x) - 27 = 0}}}

Step 2: Complete the square

{{{(x^2 + 6x+b^2)-b^2 - 27 = 0}}}......since coefficient {{{a=1}}} and {{{2ab=6}}}=>{{{b=3}}}

{{{(x^2 + 6x+3^2)-3^2 - 27 = 0}}}

{{{(x+3)^2-9 - 27 = 0}}}

{{{(x+3)^2-36 = 0}}}



Step 3: Factor the complete square

{{{(x+3)^2-36 = 0}}}.....write {{{36}}} as {{{6^2}}}

{{{(x+3)^2-6^2 = 0}}}

{{{(x+3)^2=6^2 }}}



Step 4: Use the Square Root Property

{{{(x+3)^2=6^2 }}}

{{{x+3=sqrt(6^2) }}}

{{{x=sqrt(6^2)-3 }}}

Step 5: Finish solving

{{{x=sqrt(6^2)-3 }}}=>{{{x=6-3 }}}=>{{{x=3}}}

{{{x=sqrt(6^2)-3 }}}=>{{{x=-6-3 }}}=>{{{x=-9}}}