Question 106579
{{{(x^2-(49y^2))/(6x^2+42y)}}} divided by {{{(x^2-7xy)}}}
 
You can multiply by {{{ 1/(x^2-7xy))}}} 
 
= {{{((x^2-(49y^2))/6(x^2+7y))( 1/x(x-7y))}}} 

Since {{{(x^2 - (49y^2)) = (x+7y)(x-7y)}}}, and {{{6}}} as a common factor in {{{(6x^2 + 42y)}}} => we can write it {{{6(x^2+7y)}}},

then we will have:

= {{{((x+7y)(x-7y)/6(x^2+7y))( 1/(x(x-7y)))}}}  ..eliminate {{{x}}} – {{{7y}}}

= {{{(x+7y)/(6x(x^2+7y))}}}