Question 1152855
given:

degree {{{4}}};   
zeros: 
{{{x[1]=2-5i}}} => complex zeros always come in pairs, and you also have
{{{x[2]=2+5i}}}

{{{x[3]=3}}}->    multiplicity {{{2}}}; comes two times

{{{x[4]=3}}}

{{{f(x)=(x-x[1])(x-x[2])(x-x[3])(x-x[4])}}}

{{{f(x)=(x-(2-5i))(x-(2+5i))(x-3)(x-3)}}}

{{{f(x)=(x-2+5i)(x-2-5i)(x-3)^2}}}

{{{f(x)=(x^2 - 4 x + 29)(x^2-6x+9)}}}

{{{f(x)=x^4 - 10 x^3 + 62 x^2 - 210 x + 261}}}