Question 1152238


Degree {{{4}}}; 
zeros: 
{{{x[1]=-5-3i}}}, -> complex zeros always com in pairs, so you also have
{{{x[2]=-5+3i}}}
{{{x[3]=-4}}} ->multiplicity 2, so you have one more same zero 
{{{x[4]=-4}}}

{{{f(x)=(x-x[1])(x-x[2])(x-x[3])(x-x[4])}}}

{{{f(x)=(x-(-5-3i))(x-(-5+3i))(x-(-4))(x-(-4))}}}

{{{f(x)=(x+5+3i)(x+5-3i)(x+4)(x+4)}}}

{{{f(x)=(x^2+10x+34)(x+4)^2}}}

{{{f(x)=(x^2+10x+34)(x^2+8x+16)}}}

{{{f(x)=x^4+ 18x^3+ 130x^2+ 432x+ 544   }}}