Question 1152241
Degree {{{3}}}; 
zeros: 
{{{x[1]=-6}}}, 
{{{x[2]=-3-i}}}-> complex zeros always com in pairs, so you also have
{{{x[3]=-3+i}}}

{{{f(x)=(x-x[1])(x-x[2])(x-x[3])}}}

{{{f(x)=(x-(-6))(x-(-3-i))(x-(-3+i))}}}

{{{f(x)=(x+6)(x+3+i)(x+3-i)}}}

{{{f(x)=(x+6)(x^2+3x-xi+3x+9-3i+xi+3i-i^2)}}}

{{{f(x)=(x+6)(x^2+3x-cross(xi)+3x+9-cross(3i)+cross(xi)+cross( 3i)-i^2)}}}

{{{f(x)=(x+6)(x^2+6x+9-i^2)}}}....{{{i^2=-1}}}

{{{f(x)=(x+6)(x^2+6x+9+1)}}}

{{{f(x)=(x+6)(x^2+6x+10)}}}

{{{f(x)=x^3+12x^2+46x+60}}}


{{{ graph( 600, 600, -10, 10, -10, 80, x^3+12x^2+46x+60) }}}