Question 1151584
.


            I will solve and answer parts  (a),  (b)  and  (c)  only.



<pre>
a)  is the arithmetic progression with the first term 1 and the common difference of 4.

    {{{a[n]}}} = 1 + 4*(n-1) = 4n - 3.



b)  is the arithmetic progression with the first term 70 and the common difference of 50.

    {{{a[n]}}} = 70 + 50*(n-1) = 50n + 20.



c)  is the geometric progression with the first term 1 and the common ratio of 3.

    {{{a[n]}}} = {{{1*3^(n-1)}}} = {{{3^(n-1)}}}.
</pre>


I just opened your eyes  --- you do the rest.


----------------


This problem is about the &nbsp;SIMPLEST &nbsp;properties of arithmetic and geometric progressions.


Learn the subjects from these two groups of &nbsp;<U>introductory</U> &nbsp;lessons in this site


&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Arithmetic-progressions.lesson>Arithmetic progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/The-proofs-of-the-formulas-for-arithmetic-progressions.lesson>The proofs of the formulas for arithmetic progressions</A> 

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Problems-on-arithmetic-progressions.lesson>Problems on arithmetic progressions</A>  

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Word-problems-on-arithmetic-progressions.lesson>Word problems on arithmetic progressions</A>


and


&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Geometric-progressions.lesson>Geometric progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/The-proofs-of-the-formulas-for-geometric-progressions.lesson>The proofs of the formulas for geometric progressions</A> 

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Problems-on-geometric-progressions.lesson>Problems on geometric progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Word-problems-on-geometric-progressions.lesson>Word problems on geometric progressions</A>



Also, &nbsp;you have this free of charge online textbook in ALGEBRA-II in this site

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson>ALGEBRA-II - YOUR ONLINE TEXTBOOK</A>.


The referred lessons are the part of this online textbook under the topics &nbsp;<U>"Arithmetic progressions"</U> &nbsp;and &nbsp;<U>"Geometric progressions"</U>.



Save the link to this textbook together with its description


Free of charge online textbook in ALGEBRA-II
https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson


into your archive and use when it is needed.