Question 1149862
Find the x-intercept(s) and the coordinates of the vertex for the parabola 
y = -x^2 - 2x - 1. If there is more than one -intercept, separate them with commas.<pre>
{{{y = -x^2 - 2x - 1}}}

x-intercepts:

{{{-x^2-2x-1=0}}}
{{{x^2+2x+1=0}}}
{{{(x+1)(x+1)=0}}}
{{{x+1=0}}}
{{{x=-1}}}

x-intercept = (-1,0)

-------------

x-coordinate of the vertex = {{{-b/(2a)=-(-2)/(2(-1))=-1}}}

y-coordinate of the vertex ={{{-x^2-2x-1=-(-1)^2-2(-1)-1 = -1+2-1=0}}}

vertex = (-1,0)

Whatd'y'know!!! The x-intercept and the vertex are the same point!!!

{{{graph(400,400,-4,3,-5,2,-x^2-2x-1)}}}

Edwin</pre>