Question 1147657

Hi

the units digit of a two digit number is one more than the tens digit. If the digits are reversed the new number is 3 less than twice the original number . What is the number.

I sent this question earlier but I omitted some information. 

Thanks
<pre>Let the tens and units digits be T and U, respectively
Then we get: U = T + 1 ------ eq (i)
Also, 10U + T = 2(10T + U) - 3
10U + T = 20T + 2U - 3
3 = 20T - T + 2U - 10U
3 = 19T - 8U ----------- eq (ii)
3 = 19T - 8(T + 1) ----- Substituting T + 1 for U in eq (ii)
3 = 19T - 8T - 8 
3 + 8 = 19T - 8T
11 = 11T
T, or tens digit = {{{matrix(1,3, 11/11, "=", 1)}}}
U = 1 + 1 = 2 ------- Substituting 1 for T in eq (i)
U, or units digit = 2

<b>Number: 12</b>