Question 1145766
<font face="Times New Roman" size="+2">


Complete the square on the general form quadratic:


Factor the lead coefficient out of the quadratic and linear terms:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ =\ 2(x^2\ -\ \frac{5}{2}x)\ +\ 3]


Divide the linear term coefficient by two, square the result, add the squared result inside the parentheses and subtract the lead coefficient times the squared result outside the parentheses:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ =\ 2\(x^2\ -\ \frac{5}{2}x\ +\ \frac{25}{16}\)\ +\ 3\ -\ \frac{25}{8}]


Now the parentheses contain a perfect square quadratic, so:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ =\ 2\(x\ -\ \frac{5}{4}\)^2\ -\ \frac{1}{8}]


So *[tex \LARGE p\ =\ 2], *[tex \LARGE q\ =\ -\frac{5}{4}], and *[tex \LARGE r\ =\ -\frac{1}{8}]


You can do the rest of the arithmetic.

								
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}
</font>