Question 1145152
Let {{{ t[1] }}} = time in seconds for westbound hike
Let {{{ t[2] }}} = time in seconds for eastbound hike
Let {{{ d[2] }}} = distance walked eastward
-------------------------------------------------------
The average velocity is [ displacement in meters ] / [ total time in seconds moving ]
(1) {{{ 1.1 = ( 5610 - d[2] ) / ( t[1] + t[2] ) }}}
-----------------------------------------
For the 1st part of trip:
(2) {{{ 5610 = 2.77*t[1] }}}
----------------------------
For the second part of the trip:
(3) {{{ d[2] = .376*t[2] }}}
--------------------------------
There are 3 equations & 3 unknowns, so it's solvable.
(2) {{{ t[1] = 2025.27 }}} sec
--------------------------------
(1) {{{ 1.1 = ( 5610 - d[2] ) / ( t[1] + t[2] ) }}}
(1) {{{ 1.1 = ( 5610 - d[2] ) / ( 2025.27 + t[2] ) }}}
(1) {{{ 1.1 = ( 5610 - .376*t[2] ) / ( 2025.27 + t[2] ) }}}
(1) {{{ 1.1*( 2026.27 + t[2] ) = 5610 - .376*t[2] }}}
(1) {{{ 2227.8 + 1.1t[2] = 5610 - .376*t[2] }}}
(1) {{{ 1.476t[2] = 3382.2 }}}
(1) {{{ t[2] = 2291.46 }}} sec
---------------------------------
(3) {{{ d[2] = .376*t[2] }}}
(3) {{{ d[2] = .376*2291.46 }}}
(3) {{{ d[2] = 323.96 }}}
In km:
(3) {{{ d[2] = 323.96/1000 }}}
(3) {{{ d[2] = .324 }}} km
---------------------------------
check:
(1) {{{ 1.1 = ( 5610 - d[2] ) / ( t[1] + t[2] ) }}}
(1) {{{ 1.1 = ( 5610 - 323.96 ) / ( 2025.27 + 2291.46 ) }}}
(1) {{{ 1.1 = 5286.04 / 4316.73 }}}
(1) {{{ 1.1 = 1.224 }}}
Answer is off. I think method is OK. Check the math