Question 1144540
{{{e^v=4}}}
using nat logs
{{{ln(e^v)=ln(4)}}}
the log equiv of exponent, the ln of e is 1, therefore:
v = 1.38629
v ~ 1.39 
:
{{{12^(-2x)=15}}} 
{{{-2x*log((12)) = log((15))}}}
-2x = {{{log((15))/log((12))}}}
-2x = 1.089799571
x = {{{1.089799571/-2}}}
x = -.5448997855 ~ -.54