Question 1143084
<br>
Use parentheses where required!  Don't make us correct your statement of the problem.<br>
27^(a+b) ({{{27^(a+b)}}});  not 27^a+b ({{{27^a+b}}})
(a^2-b^2)/(a-b) ({{{(a^2-b^2)/(a-b)}}});  not a^2-b^2/(a-b) ({{{a^2-b^2/(a-b)}}})<br>
So<br>
{{{3^x = 27^(a+b)}}}
{{{(a^2-b^2)/(a-b) = 5}}}<br>
The division in the second equation gives you the value of (a+b).<br>
27^(a+b) is (3^3)^(a+b) = 3^(3(a+b)) = 3^x, so x = 3(a+b); and you know what (a+b) is.<br>
You should get answer D....