Question 1142962
{{{system(n-2,n-1,n)}}}

Ambiguous Interpretation - the wrong one

{{{highlight_green(6n-5=(n-2)^2-2(n-1))}}}

{{{6n-5=n^2-4n+4-2n+2}}}

{{{n^2-4n-2n-6n+2+5=0}}}

{{{n^2-12n+7=0}}}

{{{(n-3)(n-4)=0}}}

{{{n=4}}}


--

2,3,4  the consecutive positive integers.
check:
{{{6*4-5=(4-2)^2-2(4-1)}}}
{{{19=4-4=0}}}
FALSE


--

Different Interpretation -the right one
{{{6n-5=(n-2-2(n-1))^2}}}
-
{{{6n-5=(n-2-2n+2)^2}}}
{{{6n-5=(-n)^2}}}
{{{6n-5=n^2}}}
{{{n^2-6n+5=0}}}
{{{(n-1)(n-5)=0}}}
{{{highlight(n=5)}}}
-
check:
{{{6*5-5=(5-2-2(5-1))^2}}}
{{{25=(3-2*4)^2}}}
{{{25=(-5)^2}}}, okay
-