Question 104765
{{{((-3)a^2b/35a^5)(14a^3b^2/-9b^4)}}}
A couple of exponentiation rules will help.
{{{x^m*x^n=x^(m+n)}}}
{{{x^p/x^q=x^(p-q)}}}
Let's break this down to simplify. 
First let's multiply the numerators then denominators.
Numerator:
{{{(-3a^(2)b)*(14a^(3)b^(2))=-42a^(2+3)b^(1+2)=-42a^(5)b^(3)}}}
Denominator:
{{{(35a^5)(-9b^4)=-315a^5b^4}}}
Put it together
{{{((-3)a^2b/35a^5)(14a^3b^2/-9b^4)=(-42a^(5)b^(3))/(-315a^(5)b^(4))}}}
Simplify.
{{{((-3)a^2b/35a^5)(14a^3b^2/-9b^4)=(2a^(5-5)b^(3-4))/15}}}
{{{((-3)a^2b/35a^5)(14a^3b^2/-9b^4)=2/(15b)}}}