Question 1141441
.
<pre>
The volume of the given parallelepiped is equal to the absolute value of the determinant of the 3x3-matrix


    Volume = | det {{{(matrix(3,3,  5, 3, -1,  0, 4, 2,  2, 5, 1))}}} |.


So, calculate the determinant first


    det {{{(matrix(3,3,  5, 3, -1,  0, 4, 2,  2, 5, 1))}}} = 5*(4*1 - 5*2) - 3*(0*1 - 2*2) + (-1)*(0*5 - 2*4) = -10,


and then take its absolute value as the volume


    Volume = | -10 | = 10.      <U>ANSWER</U>
</pre>