Question 1139411

3. {{{f(x) = (x+3)/(x-3)}}}, {{{c = 3}}} 

if{{{ c}}} is of the given value for{{{ x}}}

{{{f(3) = (3+3)/(3-3)=6/0}}}-> {{{undefined}}}

4. {{{f(x) = (x^2 + 3x)/(x^2 - 3x)}}}, {{{c = 0 }}}

{{{f(0) = (0^2 + 3*0)/(0^2 - 3*0)=0/0}}}->{{{ undefined}}}

In both examples 3. and 4.  if {{{c}}} is of the given value for {{{x}}}, the DENOMINATOR of the function becomes ZERO which is undefined. Thus the function has a 'hole ' there and is {{{not}}} continuous.