Question 1139171
{{{A = pi*r^2+ pi*rsqrt(h^2 + r^2)}}}


{{{A - pi*r^2=pi*rsqrt(h^2 + r^2)}}}

{{{A/(pi*r) - (pi*r^2)/(pi*r) =sqrt(h^2 + r^2)}}}

{{{A/(pi*r) - (cross(pi)*r^cross(2))/(cross(pi)*cross(r)) =sqrt(h^2 + r^2)}}}

{{{A/(pi*r) - r =sqrt(h^2 + r^2)}}}...........square both sides


{{{(A/(pi*r) - r)^2 =h^2 + r^2}}}


{{{(A/(pi*r))^2 -2(Ar/(pi*r))+r^2-r^2 =h^2 }}}

{{{A^2/(pi^2*r^2) -2A/pi  =h^2 }}}.......common denominator is {{{(pi^2*r^2)}}}

{{{A^2/(pi^2*r^2) -(2A*pi*r^2)/(pi^2*r^2) =h^2 }}}

{{{A^2/(pi^2*r^2) -(2A^2*pi*r^2)/(Api^2*r^2) =h^2 }}} factor out common {{{A^2/(pi^2*r^2)}}}

{{{(A^2/(pi^2*r^2))(1 -(2pi*r^2)/A )=h^2 }}}


{{{h=sqrt((A^2/(pi^2*r^2)))*sqrt((1 -(2pi*r^2)/A ))}}}


{{{h=(A/(pi*r))*sqrt((1 -(2pi*r^2)/A ))}}}