Question 1137062

Find an equation of the ellipse that has :

center ({{{h}}},{{{k}}})=({{{-5}}},{{{5}}})

a minor axis of length {{{b=4 }}}

a vertex at ({{{4}}},{{{5}}}) 
since vertices  are {{{a }}}units to either side of the center, then {{{a}}} is distance from {{{-5}}} to {{{4}}} and it is {{{a=9 }}}units


{{{(x-h)^2/a^2+(y-k)^2/b^2=1}}}

{{{(x-(-5))^2/9^2+(y-5)^2/4^2=1}}}

{{{(x+5)^2/81+(y-5)^2/16=1}}}


{{{drawing ( 600, 600, -15, 15, -15, 15,
circle(-5,5,.12),locate(-5,5,C(-5,5)),
circle(4,5,.12),locate(4,5,v(4,5)),
graph( 600, 600, -15, 15, -15, 15,-sqrt(16(1-(x+5)^2/81))+5, sqrt(16(1-(x+5)^2/81))+5) )}}}