Question 1135262


triangle ABC has coordinates A(0,0), B(0,6) , and C (4,0). 

distance between two points is equal to length of the side
A(0,0), B(0,6)
{{{AB=sqrt((0-0)^2+(6-0)^2)}}}
{{{AB=sqrt(36)}}}
{{{AB=6}}}

A(0,0),C (4,0)
{{{AC=sqrt((4-0)^2+(0-0)^2)}}}
{{{AC=sqrt(16)}}}
{{{AC=4}}}

B(0,6) , and C (4,0).

{{{BC=sqrt((4-0)^2+(0-6)^2)}}}
{{{BC=sqrt(16+36)}}}
{{{BC=sqrt(52)}}}

{{{BC=4sqrt(13)}}}


Triangle {{{DEF}}} is similar to triangle {{{ABC}}}, and the length of {{{DE}}} is {{{3}}} units. what is the measure of segment {{{DF}}}? why 

{{{AC/DF=AB /DE }}}=>similar  triangles have {{{proportional}}} sides 

{{{4/DF=6 /3}}}

{{{12=6 DF}}}

{{{DF=12/6}}}

{{{DF=2}}}