Question 1134678
{{{(x-3)/(x+2)-10/(x^2+2x)=0 }}} 


{{{(x-3)/(x+2)-10/x(x+2)=0 }}} ..........common denominator is {{{x(x+2)}}}


{{{x(x-3)/x(x+2)-10/x(x+2)=0 }}}


 {{{(x(x-3)-10)/x(x+2)=0 }}} 


{{{(x^2-3x-10)/x(x+2)=0 }}} ...factor numerator


{{{((x + 2) (x - 5))/x(x+2)=0 }}}.....since numerator and denominator have {{{x+2=0}}}=> {{{x=-2}}} is not a solution because  denominator cannot be equal to zero

{{{(cross((x + 2)) (x - 5))/xcross((x+2))=0 }}}......simplify


{{{ (x - 5)/x=0 }}}


since denominator cannot be equal to zero (function would be undefined), exclude value {{{x=0}}}

solution is: 


{{{ x - 5=0 }}}=>{{{x=5}}}


{{{drawing ( 600, 600, -10, 10, -10, 10,

circle(5,0,.12),locate(5,0.5,p(5,0)),
graph( 600, 600, -10, 10, -10, 10, (x-3)/(x+2)-10/(x^2+2x))) }}}