Question 1134359
Solve for x:

(cx + d) / (a) / (cx) / (d) = (2d) / (a)

Not sure how to continue.
<pre>If {{{matrix(1,3, ((cx + d)/a)/(cx/d), "=", 2d/a)}}}, then:
{{{matrix(1,5, (cx + d)/a, "*", d/cx, "=", 2d/a)}}}
{{{matrix(1,3, d(cx + d)/acx, "=", 2d/a)}}}
{{{matrix(1,3, cross(d)(cx + d)/cross(a)cx, "=", 2cross(d)/cross(a))}}} ------ Cancelling GCF, d in numerator, and GCF, a in denominator
2cx = cx + d ------ Cross-multiplying
2cx - cx = d
cx = d
{{{highlight_green(matrix(1,3, x, "=", d/c))}}}