Question 1134041

the complex number in the form {{{a + bi}}}. 

{{{sqrt(6 (cos (315) + i *sin (315)) )}}}.......{{{cos (315) =1/sqrt(2)}}} and {{{sin(315)= -1/sqrt(2)}}}

={{{sqrt(6 (1/sqrt(2)- i *1/sqrt(2)) )}}}

={{{sqrt(6 (1- i )/sqrt(2) )}}}

={{{sqrt( 6 (1- i )/sqrt(2) )}}}

={{{sqrt((sqrt(2)*6 (1- i ))/2 )}}}

={{{sqrt(sqrt(2)(3 - 3i ))}}}

={{{root(4,2)*sqrt(3(1 - i) )}}}

={{{root(4,2)*sqrt(3)sqrt(1 - i )}}}

={{{1.18920*1.732(1.0986841 -0.455*i)}}}

={{{2.26 - 0.937* i}}}