Question 1133981
If {{{x=3-4sqrt(2)}}},then the value of {{{(x+1)/x}}} will be

{{{(3-4sqrt(2)+1)/(3-4sqrt(2))}}}

{{{(4 - 4 sqrt(2))/(3 - 4sqrt(2))}}}.......multiply by the conjugate {{{(3+4 sqrt(2))}}} and apply minus-plus rules 

{{{((4 - 4 sqrt(2))(3+4sqrt(2)))/((3 - 4 sqrt(2))(3+4 sqrt(2)))}}}

{{{(4 (sqrt(2) - 5))/(3^2 - (4sqrt(2))^2)}}}.... apply minus-plus rules 

{{{(-4(5-(sqrt(2))))/(-(4sqrt(2))^2-3^2)}}}....simplify:{{{(4sqrt(2))^2-3^2=23}}}

{{{4(5-sqrt(2))/23}}}

{{{(4/23) (5 - sqrt(2))}}}


in case you have {{{x+1/x=3-4sqrt(2)+1/(3-4sqrt(2))}}} you will get

{{{(6/23)(11 - 16sqrt(2))}}}


so, in both cases answer is : D) {{{none}}}