Question 1133687


Express the complex number in trigonometric form. 
{{{-6i}}} 

{{{z=r(cos(alpha)+i*sin(alpha))}}}

{{{-6i=a-b*i}}} =>{{{a=0}}}, {{{b=-6}}}

{{{r=sqrt((-6)^2)}}}
{{{r= sqrt(36)}}}
{{{r=6}}} 

{{{z=6* (cos(alpha)+i*sin(alpha))}}}

{{{tan(alpha)=-6/0=undefined}}}

Since the argument is undefined and {{{b}}} is negative, the angle of the point on the complex plane is {{{3pi/2}}}.


{{{z = 6 (cos(2pi) + i *sin(2pi))}}}