Question 1133618
{{{y=x^2-6}}}....eq.1
{{{y=x-4}}}....eq.2
-----------------------
left sides are equal, so

{{{x^2-6=x-4}}}..........solve for {{{x}}}

{{{x^2-6-x+4=0}}}

{{{x^2-x-2=0}}}...factor

{{{x^2-2x+x-2=0}}}

{{{(x^2-2x)+(x-2)=0}}}

{{{x(x-2)+(x-2)=0}}}

{{{(x+1)(x-2)=0}}}

=>{{{x=-1}}} or {{{x=2}}}


go to {{{y=x-4}}}....eq.2, plug in values for {{{x}}}


{{{y=-1-4}}}=>{{{y=-5}}}

{{{y=2-4}}}=>{{{y=-2}}}

solutions:

({{{-1}}},{{{-5}}})

and
({{{2}}},{{{-2}}})


 {{{drawing( 600,600, -10,10, -10, 10, 
circle(-1,-5,.12),circle(2,-2,.12),
locate(-1,-5,p(-1,-5)),locate(2,-2,p(2,-2)),
 graph( 600,600, -10,10, -10, 10, x-4, x^2-6)) }}}