Question 1133609


({{{5}}},{{{x}}},{{{x+1}}}) are Pythagorean triplets if

find {{{x}}} such that:

{{{(x+1)^2=x^2+5^2}}}

{{{x^2 + 2 x + 1 = x^2 + 25}}}

{{{cross(x^2) + 2 x + 1 = cross(x^2) + 25}}}

{{{ 2 x + 1 =  25}}}

{{{ 2 x =  24}}}

{{{ x = 12}}}


({{{5}}},{{{x}}},{{{x+1}}})=({{{5}}},{{{12}}},{{{13}}})

{{{13^2=12^2+5^2}}}

{{{169=144+25}}}

{{{169=169}}}=> proof that ({{{5}}},{{{12}}},{{{13}}}) are Pythagorean triplets