Question 1133510
 Solve the following equation: 

{{{-(4/5)(7y+5)-(6/10)(-6y-7)=2y-148/25}}}..........both side multiply by common denominator {{{50}}}

{{{-50(4/5)(7y+5)-50(6/10)(-6y-7)=50*2y-50*148/25}}}

{{{-10*4(7y+5)-5*6(-6y-7)=100y-2*148}}}

{{{-40(7y+5)-30(-6y-7)=100y-296}}}

{{{-280y-200+180y+210=100y-296}}}

{{{-100y+10=100y-296}}}

{{{296+10=100y+100y}}}

{{{306=200y}}}

{{{153=100y}}}

{{{y=153/100}}}->exact solution

{{{y=1.53}}}->decimal solution


Simplify: [(𝑥^3𝑚)^−2𝑛^2/𝑛^-1𝑥^-4]^-2 

it's not quite clear what do you have here

my guess is:


{{{((x^3 * m)^(-2 )*n^2)/(n^-1 * x^-4))^2}}}


{{{((x^3)^(-2 ) * m^(-2 ))*n^2/((1/n) *(1/ x^4))^2}}}


{{{((1/(x^3)^2 ) * (1/m^2 )*n^2)/(1/(n* x^4))^2}}}


{{{((1/x^6) *(1/m^2)*n^2)/(1^2/(n^2* x^8))}}}


{{{( n^2/(x^6 *m^2 ))/(1/(n^2* x^8))}}}


{{{ n^2(n^2* x^8)/(x^6 *m^2 )}}}............since {{{x^8/x^6=x^2/1}}}


 {{{(n^4* x^2)/m^2 }}}