Question 1133473
Statistical file:

{ 2,5,18, 48,52, 57,58,79, 83,84, 90,98 }


1. Minimum: {{{highlight(2)}}}


{ 2, 5, 18, 48, 52, 57, 58, 79, 83,84, 90, 98 }

2.Maximum: {{{highlight(98)}}}	


 {{{ ( 57+58)/2=57.5}}}

3. Median: {{{ highlight(57.5)}}}


4.Quartile {{{Q[1]}}} is the median in the lower half of the data

{{{Q[1]=(18+48)/2=highlight(33)}}}


5. Quartile {{{Q[3]}}} is the median in the upper half of data

{{{Q[3]=(83+84)/2= highlight(83.5)}}}


=>5 number summary:

____{{{2}}}__, ___{{{98}}}____, ___{{{57.5}}}____, ___{{{33}}}___, ___{{{83.5}}}___ 


The range of a data set is the distance between the maximum and minimum value. To compute the range of a data set, we subtract the minimum from the maximum:

{{{range = maximum - minimum}}}
{{{range = 98 -2=96}}}

The interquartile range of a data set is the distance between the two quartiles.

{{{Interquartile_ range = Q[3] -Q[1]=83.5-33=50.5}}}